The magnetic field (in A/m) inside a long solid cylindrical conductor of radius a = 0.1 m is $$\overrightarrow {\bf{H}} = \frac{{{{10}^4}}}{r}\left[ {\frac{1}{{{\alpha ^2}}}\sin \left( {\alpha r} \right) - \frac{r}{\alpha }\cos \left( {\alpha r} \right)} \right]\hat \phi ,$$ where, $$\alpha = \frac{\pi }{{2a}}.$$ What is the total current (in ampere) in the conductor?
A. $$\frac{\pi }{{2a}}$$
B. $$\frac{{800}}{\pi }$$
C. $$\frac{{400}}{\pi }$$
D. $$\frac{{300}}{\pi }$$
Answer: Option B
Related Questions on Electromagnetic Theory
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$

Join The Discussion