Examveda

The magnetic field (in A/m) inside a long solid cylindrical conductor of radius a = 0.1 m is $$\overrightarrow {\bf{H}} = \frac{{{{10}^4}}}{r}\left[ {\frac{1}{{{\alpha ^2}}}\sin \left( {\alpha r} \right) - \frac{r}{\alpha }\cos \left( {\alpha r} \right)} \right]\hat \phi ,$$       where, $$\alpha = \frac{\pi }{{2a}}.$$  What is the total current (in ampere) in the conductor?

A. $$\frac{\pi }{{2a}}$$

B. $$\frac{{800}}{\pi }$$

C. $$\frac{{400}}{\pi }$$

D. $$\frac{{300}}{\pi }$$

Answer: Option B


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$