The minimum value of (x - 2)(x - 9) is?
A. $$ - \frac{{11}}{4}$$
B. $$\frac{{49}}{4}$$
C. 0
D. $$ - \frac{{49}}{4}$$
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & \left( {x - 2} \right)\left( {x - 9} \right) \cr & = {x^2} - 9x - 2x + 18 \cr & = {x^2} - 11x + 18 \cr & = a{x^2} + bx + c = 0 \cr & {\text{For minimum value}} \cr & = \frac{{4ac - {b^2}}}{{4a}} \cr & = \frac{{4 \times 1 \times 18 - {{\left( { - 11} \right)}^2}}}{{4 \times 1}} \cr & = \frac{{72 - 121}}{4} \cr & = \frac{{ - 49}}{4} \cr & = - \frac{{49}}{4} \cr} $$Join The Discussion
Comments (1)
Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Minimal value of formulae,x=(4ac-b^2)÷4a.