The orthocentre of a triangle is the point where
A. the medians meet
B. the altitudes meet
C. the right bisectors of the sides of
D. the bisectors of the angles
Answer: Option B
A. the medians meet
B. the altitudes meet
C. the right bisectors of the sides of
D. the bisectors of the angles
Answer: Option B
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is
A. 30°
B. 40°
C. 20°
D. 70°
Join The Discussion