Examveda

The perimeter of a rectangle and an equilateral triangle are same. Also one of the sides of the rectangle is equal to the side of the triangle. The ratio of the area of the rectangle and the triangle is

A. √3 : 1

B. 1 : √3

C. 2 : √3

D. 4 : √3

Answer: Option C

Solution (By Examveda Team)

2($$l$$ + b) = 3a
(a = side of equilateral triangle)
Let (b = a)
⇒ 2($$l$$ + a) = 3a
⇒ 2$$l$$ + 2a = 3a
⇒2$$l$$ = a
⇒ $$l$$ = $$\frac{{\text{a}}}{2}$$
Required Ratio
$$\eqalign{ & = \frac{{l \times b}}{{\frac{{\sqrt 3 }}{4}{a^2}}} \cr & = \frac{{\frac{a}{2} \times a}}{{\frac{{\sqrt 3 }}{4}{a^2}}} \cr & = \frac{{{a^2}}}{2} \times \frac{4}{{\sqrt 3 {a^2}}} \cr & = \frac{2}{{\sqrt 3 }} \cr & = {\bf{2:}}\sqrt {\bf{3}} \cr} $$

This Question Belongs to Arithmetic Ability >> Mensuration 2D

Join The Discussion

Related Questions on Mensuration 2D