The perimeter of a triangle with sides of integer values is equal to 13. How many such triangles are possible?
A. 5
B. 8
C. 7
D. 6
Answer: Option A
Solution (By Examveda Team)
Number of possible triangles when perimeter is odd$$\eqalign{ & = \frac{{{{\left( {P + 3} \right)}^2}}}{{48}} \cr & = \frac{{{{\left( {13 + 3} \right)}^2}}}{{48}} \cr & = \frac{{16 \times 16}}{{48}} \cr & = \frac{{16}}{3} \cr & = 5\,... \cr & = 5 \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion