Examveda

The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are

A. $$\overrightarrow {\bf{A}} = \frac{{2\pi }}{a}\left( {{\bf{\hat x}} - {\bf{\hat y}}} \right);\,\overrightarrow {\bf{B}} = \frac{{2\pi }}{a}\left( {{\bf{\hat y}} + {\bf{\hat z}}} \right);\,\overrightarrow {\bf{C}} = \frac{{2\pi }}{a}\left( {{\bf{\hat x}} + {\bf{\hat z}}} \right)$$

B. $$\overrightarrow {\bf{A}} = \frac{{2\pi }}{a}\left( {{\bf{\hat x}} - {\bf{\hat y}}} \right);\,\overrightarrow {\bf{B}} = \frac{{2\pi }}{a}\left( {{\bf{\hat y}} - {\bf{\hat z}}} \right);\,\overrightarrow {\bf{C}} = \frac{{2\pi }}{a}\left( {{\bf{\hat x}} + {\bf{\hat z}}} \right)$$

C. $$\overrightarrow {\bf{A}} = \frac{{2\pi }}{a}\left( {{\bf{\hat x}} + {\bf{\hat y}}} \right);\,\overrightarrow {\bf{B}} = \frac{{2\pi }}{a}\left( {{\bf{\hat y}} + {\bf{\hat z}}} \right);\,\overrightarrow {\bf{C}} = \frac{{2\pi }}{a}\left( {{\bf{\hat x}} - {\bf{\hat z}}} \right)$$

D. $$\overrightarrow {\bf{A}} = \frac{{2\pi }}{a}\left( {{\bf{\hat x}} + {\bf{\hat y}}} \right);\,\overrightarrow {\bf{B}} = \frac{{2\pi }}{a}\left( {{\bf{\hat y}} + {\bf{\hat z}}} \right);\,\overrightarrow {\bf{C}} = \frac{{2\pi }}{a}\left( {{\bf{\hat x}} + {\bf{\hat z}}} \right)$$

Answer: Option D


This Question Belongs to Engineering Physics >> Solid State Physics

Join The Discussion

Related Questions on Solid State Physics

In a cubic crystal, atoms of mass M1 lie on one set of planes and atoms of mass M2 lie on planes interleaved between those of the first set. If C is the forte constant between nearest neighbour planes, the frequency of lattice vibrations for the optical phonon branch with wave vector k = 0 is

A. $$\sqrt {2C\left( {\frac{1}{{{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$

B. $$\sqrt {C\left( {\frac{1}{{2{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$

C. $$\sqrt {C\left( {\frac{1}{{{M_1}}} + \frac{1}{{2{M_2}}}} \right)} $$

D. zero