Examveda
Examveda

The rational numbers lying between $$\frac{1}{3}$$ and $$\frac{3}{4}$$ are :

A. $$\frac{{117}}{{300}},\frac{{287}}{{400}}$$

B. $$\frac{{95}}{{300}},\frac{{301}}{{400}}$$

C. $$\frac{{99}}{{300}},\frac{{301}}{{400}}$$

D. $$\frac{{97}}{{300}},\frac{{299}}{{500}}$$

Answer: Option A

Solution(By Examveda Team)

$$\eqalign{ & \frac{1}{3} = 0.333 \cr & \frac{3}{4} = 0.75 \cr & \frac{{117}}{{300}} = 0.39 \cr & \frac{{287}}{{400}} = 0.7175 \cr & \frac{{95}}{{300}} = 0.316 \cr & \frac{{301}}{{400}} = 0.7525 \cr & \frac{{99}}{{300}} = 0.33 \cr & \frac{{97}}{{300}} = 0.323 \cr & \frac{{299}}{{500}} = 0.598 \cr} $$
Clearly, each one of 0.39 and 0.7175 lies between 0.333 and 0.75
So, $$\frac{117}{300}$$ and $$\frac{287}{400}$$ lie between $$\frac{1}{3}$$ and $$\frac{3}{4}$$

This Question Belongs to Arithmetic Ability >> Decimal Fraction

Join The Discussion

Related Questions on Decimal Fraction