The recursion relation to solve x = e-x using Newton-Raphson method is
A. $${{\text{x}}_{{\text{n}} + 1}} = {{\text{e}}^{ - {{\text{x}}_{\text{n}}}}}$$
B. $${{\text{x}}_{{\text{n}} + 1}} = {{\text{x}}_{\text{n}}} - {{\text{e}}^{ - {{\text{x}}_{\text{n}}}}}$$
C. $${{\text{x}}_{{\text{n}} + 1}} = \left( {1 + {{\text{x}}_{\text{n}}}} \right)\frac{{{{\text{e}}^{ - {{\text{x}}_{\text{n}}}}}}}{{1 + {{\text{e}}^{ - {{\text{x}}_{\text{n}}}}}}}$$
D. $${{\text{x}}_{{\text{n}} + 1}} = \frac{{{\text{x}}_{\text{n}}^2 - {{\text{e}}^{ - {{\text{x}}_{\text{n}}}}}\left( {1 + {{\text{x}}_{\text{n}}}} \right) - 1}}{{{{\text{x}}_{\text{n}}} - {{\text{e}}^{ - {{\text{x}}_{\text{n}}}}}}}$$
Answer: Option C
Roots of the algebraic equation x3 + x2 + x + 1 = 0 are
A. (+1, +j, -j)
B. (+1, -1, +1)
C. (0, 0, 0)
D. (-1, +j. -j)
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Join The Discussion