The recursion relation to solve x = e-x using Newton-Raphson method is
A. $${{\text{x}}_{{\text{n}} + 1}} = {{\text{e}}^{ - {{\text{x}}_{\text{n}}}}}$$
B. $${{\text{x}}_{{\text{n}} + 1}} = {{\text{x}}_{\text{n}}} - {{\text{e}}^{ - {{\text{x}}_{\text{n}}}}}$$
C. $${{\text{x}}_{{\text{n}} + 1}} = \left( {1 + {{\text{x}}_{\text{n}}}} \right)\frac{{{{\text{e}}^{ - {{\text{x}}_{\text{n}}}}}}}{{1 + {{\text{e}}^{ - {{\text{x}}_{\text{n}}}}}}}$$
D. $${{\text{x}}_{{\text{n}} + 1}} = \frac{{{\text{x}}_{\text{n}}^2 - {{\text{e}}^{ - {{\text{x}}_{\text{n}}}}}\left( {1 + {{\text{x}}_{\text{n}}}} \right) - 1}}{{{{\text{x}}_{\text{n}}} - {{\text{e}}^{ - {{\text{x}}_{\text{n}}}}}}}$$
Answer: Option C
Join The Discussion