Examveda
Examveda

The respective expressions for complimentary function and particular integral part of the solution of the differential equation $$\frac{{{{\text{d}}^4}{\text{y}}}}{{{\text{d}}{{\text{x}}^4}}} + 3\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} = 108{{\text{x}}^2}$$    are

A. $$\left[ {{{\text{c}}_1} + {{\text{c}}_2}{\text{x}} + {{\text{c}}_3}\sin \sqrt {3{\text{x}}} + {{\text{c}}_4}\cos \sqrt {3{\text{x}}} } \right]{\text{ and }}\left[ {3{{\text{x}}^4} - 12{{\text{x}}^2} + {\text{c}}} \right]$$

B. $$\left[ {{{\text{c}}_2} + {{\text{c}}_3}\sin \sqrt {3{\text{x}}} + {{\text{c}}_4}\cos \sqrt {3{\text{x}}} } \right]{\text{ and }}\left[ {5{{\text{x}}^4} - 12{{\text{x}}^2} + {\text{c}}} \right]$$

C. $$\left[ {{{\text{c}}_1} + {{\text{c}}_3}\sin \sqrt {3{\text{x}}} + {{\text{c}}_4}\cos \sqrt {3{\text{x}}} } \right]{\text{ and }}\left[ {3{{\text{x}}^4} - 12{{\text{x}}^2} + {\text{c}}} \right]$$

D. $$\left[ {{{\text{c}}_1} + {{\text{c}}_2}{\text{x}} + {{\text{c}}_3}\sin \sqrt {3{\text{x}}} + {{\text{c}}_4}\cos \sqrt {3{\text{x}}} } \right]{\text{ and }}\left[ {5{{\text{x}}^4} - 12{{\text{x}}^2} + {\text{c}}} \right]$$

Answer: Option A


This Question Belongs to Engineering Maths >> Differential Equations

Join The Discussion

Related Questions on Differential Equations

The general solution of the differential equation, $$\frac{{{{\text{d}}^4}{\text{y}}}}{{{\text{d}}{{\text{x}}^4}}} - 2\frac{{{{\text{d}}^3}{\text{y}}}}{{{\text{d}}{{\text{x}}^3}}} + 2\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} - 2\frac{{{\text{dy}}}}{{{\text{dx}}}} + {\text{y}} = 0$$       is

A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$