The settling velocity of a spherical particle of diameter less than 0.1 mm as per Stock’s law, is
A. $${{\text{V}}_{\text{s}}} = 418\left( {{{\text{G}}_{\text{s}}} - {{\text{G}}_{\text{w}}}} \right){\text{d}}\left( {\frac{{3{\text{T}} + 70}}{{100}}} \right)$$
B. $${{\text{V}}_{\text{s}}} = 418\left( {{{\text{G}}_{\text{s}}} - {{\text{G}}_{\text{w}}}} \right){{\text{d}}^2}\left( {\frac{{3{\text{T}} + 70}}{{100}}} \right)$$
C. $${{\text{V}}_{\text{s}}} = 218\left( {{{\text{G}}_{\text{s}}} - {{\text{G}}_{\text{w}}}} \right){{\text{d}}^2}\left( {\frac{{3{\text{T}} + 70}}{{100}}} \right)$$
D. $${{\text{V}}_{\text{s}}} = 218\left( {{{\text{G}}_{\text{s}}} - {{\text{G}}_{\text{w}}}} \right){\text{d}}\left( {\frac{{3{\text{T}} + 70}}{{100}}} \right)$$
Answer: Option B
design a grit chamber for max waterflow 15000 m3/day to remove particles upto 0.2mm dia. having specific gravity 2.65. the setteling velocities of this particles is fiund to ranges from 0.016 to 0.022 m/sec. assune flow velocity 0.3m/sec.