The side BC of a triangle ABC is extended to the point D. If ∠ACD = 132° and ∠B = $$\frac{4}{7}$$∠A, then the measure of ∠A is equal to:
A. 60°
B. 80°
C. 50°
D. 84°
Answer: Option D
Solution (By Examveda Team)

$$\eqalign{ & \angle {\text{B}} = \frac{4}{7}\angle {\text{A}} \cr & \frac{{\angle {\text{B}}}}{{\angle {\text{A}}}} = \frac{4}{7} \cr} $$
By exterior angle theorem
7x + 4x = 132°
11x = 132°
x = 12°
∠A = 7 × 12° = 84°
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion