The simplified value of $$\left( {1 - \frac{{2xy}}{{{x^2} + {y^2}}}} \right)$$ $$ ÷ $$ $$\left( {\frac{{{x^3} - {y^3}}}{{x - y}} - 3xy} \right)$$ is?
A. $$\frac{1}{{{x^2} - {y^2}}}$$
B. $$\frac{1}{{{x^2} + {y^2}}}$$
C. $$\frac{1}{{x - y}}$$
D. $$\frac{1}{{x + y}}$$
Answer: Option B
Solution (By Examveda Team)
$$\left( {1 - \frac{{2xy}}{{{x^2} + {y^2}}}} \right) \div \left( {\frac{{{x^3} - {y^3}}}{{x - y}} - 3xy} \right)$$$$ = \left( {\frac{{{x^2} + {y^2} - 2xy}}{{{x^2} + {y^2}}}} \right) \div $$ $$\left( {\frac{{{x^3} - {y^3} - 3xy\left( {x - y} \right)}}{{x - y}}} \right)$$
$$\eqalign{ & = \frac{{{{\left( {x - y} \right)}^2}}}{{{x^2} + {y^2}}} \div \frac{{{{\left( {x - y} \right)}^3}}}{{x - y}} \cr & = \frac{{{{\left( {x - y} \right)}^2}}}{{{x^2} + {y^2}}} \div {\left( {x - y} \right)^2} \cr & = \frac{{{{\left( {x - y} \right)}^2}}}{{{x^2} + {y^2}}} \times \frac{1}{{{{\left( {x - y} \right)}^2}}} \cr & = \frac{1}{{{x^2} + {y^2}}} \cr} $$
Join The Discussion