The solution of $$\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} + 2\frac{{{\text{dy}}}}{{{\text{dx}}}} + 17{\text{y}} = 0;$$ y(0) = 1, $$\frac{{{\text{dy}}}}{{{\text{dx}}}}\left( {\frac{\pi }{4}} \right) = 0$$ in the range 0 < x < $$\frac{\pi }{4}$$ is given by
A. $${{\text{e}}^{ - {\text{x}}}}\left( {\cos 4{\text{x}} + \frac{1}{4}\sin 4{\text{x}}} \right)$$
B. $${{\text{e}}^{\text{x}}}\left( {\cos 4{\text{x}} - \frac{1}{4}\sin 4{\text{x}}} \right)$$
C. $${{\text{e}}^{ - 4{\text{x}}}}\left( {\cos {\text{x}} - \frac{1}{4}\sin {\text{x}}} \right)$$
D. $${{\text{e}}^{ - 4{\text{x}}}}\left( {\cos 4{\text{x}} - \frac{1}{4}\sin 4{\text{x}}} \right)$$
Answer: Option A
A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$
A. $$\sqrt {1 - {{\text{x}}^2}} = {\text{c}}$$
B. $$\sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
C. $$\sqrt {1 - {{\text{x}}^2}} + \sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
D. $$\sqrt {1 + {{\text{x}}^2}} + \sqrt {1 + {{\text{y}}^2}} = {\text{c}}$$

Join The Discussion