The solution of differential equation $$\frac{{{{\text{d}}^2}{\text{u}}}}{{{\text{d}}{{\text{x}}^2}}} - {\text{K}}\frac{{{\text{du}}}}{{{\text{dx}}}} = 0$$ where K is constant, subjected to boundary conditions u(0) = 0 and u(L) = U is
A. $${\text{u}} = \frac{{{\text{Ux}}}}{{\text{L}}}$$
B. $${\text{u}} = {\text{U}}\left[ {\frac{{1 - {{\text{e}}^{{\text{Kx}}}}}}{{1 - {{\text{e}}^{{\text{KL}}}}}}} \right]$$
C. $${\text{u}} = {\text{U}}\left[ {\frac{{1 - {{\text{e}}^{ - {\text{Kx}}}}}}{{1 - {{\text{e}}^{ - {\text{KL}}}}}}} \right]$$
D. $${\text{u}} = {\text{U}}\left[ {\frac{{1 - {{\text{e}}^{{\text{Kx}}}}}}{{1 + {{\text{e}}^{{\text{KL}}}}}}} \right]$$
Answer: Option B
A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$
A. $$\sqrt {1 - {{\text{x}}^2}} = {\text{c}}$$
B. $$\sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
C. $$\sqrt {1 - {{\text{x}}^2}} + \sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
D. $$\sqrt {1 + {{\text{x}}^2}} + \sqrt {1 + {{\text{y}}^2}} = {\text{c}}$$

Join The Discussion