Examveda

The solution of the differential equation $$\frac{{{\text{dy}}}}{{{\text{dx}}}} + \frac{{\text{y}}}{{\text{x}}} = {\text{x}},$$   with the condition that y = 1 at x = 1, is

A. $${\text{y}} = \frac{2}{{3{{\text{x}}^2}}} + \frac{{\text{x}}}{3}$$

B. $${\text{y}} = \frac{{\text{x}}}{2} + \frac{{\text{1}}}{{2{\text{x}}}}$$

C. $${\text{y}} = \frac{2}{3} + \frac{{\text{x}}}{3}$$

D. $${\text{y}} = \frac{2}{{3{\text{x}}}} + \frac{{{{\text{x}}^2}}}{3}$$

Answer: Option D


This Question Belongs to Engineering Maths >> Differential Equations

Join The Discussion

Related Questions on Differential Equations

The general solution of the differential equation, $$\frac{{{{\text{d}}^4}{\text{y}}}}{{{\text{d}}{{\text{x}}^4}}} - 2\frac{{{{\text{d}}^3}{\text{y}}}}{{{\text{d}}{{\text{x}}^3}}} + 2\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} - 2\frac{{{\text{dy}}}}{{{\text{dx}}}} + {\text{y}} = 0$$       is

A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$