The solution of the differential equation, $${\text{y}}\sqrt {1 - {{\text{x}}^2}} {\text{dy}} + {\text{x}}\sqrt {1 - {{\text{y}}^2}} {\text{dx}} = {\text{0}}$$ is
A. $$\sqrt {1 - {{\text{x}}^2}} = {\text{c}}$$
B. $$\sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
C. $$\sqrt {1 - {{\text{x}}^2}} + \sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
D. $$\sqrt {1 + {{\text{x}}^2}} + \sqrt {1 + {{\text{y}}^2}} = {\text{c}}$$
Answer: Option C
Join The Discussion