The solution to the differential equation $$\frac{{{{\text{d}}^2} \cdot {\text{u}}}}{{{\text{d}}{{\text{x}}^2}}} - {\text{k}}\frac{{{\text{du}}}}{{{\text{dx}}}} = 0$$ is where k is constant, subjected to the boundary conditions u(0) = 0 and u(L) = U, is
A. $${\text{u}} = {\text{U}}\frac{{\text{x}}}{{\text{L}}}$$
B. $${\text{u}} = {\text{U}}\left( {\frac{{1 - {{\text{e}}^{{\text{kx}}}}}}{{1 - {{\text{e}}^{{\text{kL}}}}}}} \right)$$
C. $${\text{u}} = {\text{U}}\left( {\frac{{1 - {{\text{e}}^{ - {\text{kx}}}}}}{{1 - {{\text{e}}^{ - {\text{kL}}}}}}} \right)$$
D. $${\text{u}} = {\text{U}}\left( {\frac{{1 + {{\text{e}}^{{\text{kx}}}}}}{{1 + {{\text{e}}^{{\text{kL}}}}}}} \right)$$
Answer: Option B
A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$
A. $$\sqrt {1 - {{\text{x}}^2}} = {\text{c}}$$
B. $$\sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
C. $$\sqrt {1 - {{\text{x}}^2}} + \sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
D. $$\sqrt {1 + {{\text{x}}^2}} + \sqrt {1 + {{\text{y}}^2}} = {\text{c}}$$

Join The Discussion