The square root of a number N is to be obtained by applying the Newton Raphson iterations to the equation x2 - N = 0. If i denotes the iteration index, the correct iterative scheme will be
A. $${{\text{x}}_{{\text{i}} + 1}} = \frac{1}{2}\left( {{{\text{x}}_{\text{i}}} + \frac{{\text{N}}}{{{{\text{x}}_{\text{i}}}}}} \right)$$
B. $${{\text{x}}_{{\text{i}} + 1}} = \frac{1}{2}\left( {{\text{x}}_{\text{i}}^2 + \frac{{\text{N}}}{{{\text{x}}_{\text{i}}^2}}} \right)$$
C. $${{\text{x}}_{{\text{i}} + 1}} = \frac{1}{2}\left( {{{\text{x}}_{\text{i}}} + \frac{{{{\text{N}}^2}}}{{{{\text{x}}_{\text{i}}}}}} \right)$$
D. $${{\text{x}}_{{\text{i}} + 1}} = \frac{1}{2}\left( {{{\text{x}}_{\text{i}}} - \frac{{\text{N}}}{{{{\text{x}}_{\text{i}}}}}} \right)$$
Answer: Option A
Related Questions on Numerical Methods
Roots of the algebraic equation x3 + x2 + x + 1 = 0 are
A. (+1, +j, -j)
B. (+1, -1, +1)
C. (0, 0, 0)
D. (-1, +j. -j)
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Join The Discussion