Examveda
Examveda

The stateof polarization of light with the electric field vector $$\overrightarrow {\bf{E}} = {\bf{\hat i}}{E_0}\cos \left( {kz - \omega t} \right) - {\bf{\hat j}}{E_0}\cos \left( {kz - \omega t} \right)$$         is

A. linearly polarized along Z-direction

B. linearly polarized at -45° to X-axis

C. circularly polarized

D. elliptically polarized with the major axis along X-axis

Answer: Option B


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$