The thermal conductivity of a given material reduces, when it undergoes a transition from its normal state to the superconducting state. The reason is
A. the cooper pairs cannot transfer energy to the lattice
B. upon the formation of cooper pairs, the lattice becomes less efficient in heat transfer
C. the electrons in the normal state lose their ability to transfer heat because of their coupling to the cooper pairs
D. the heat capacity increases on transition to the superconducting state leading to a reduction in thermal conductivity
Answer: Option A
The valence electrons do not directly determine the following property of a metal
A. electrical conductivity
B. thermal conductivity
C. shear modulus
D. metallic lustre
A. $${\left( {\frac{{2Q}}{P}} \right)^{ - 6}}$$
B. $${\left( {\frac{Q}{P}} \right)^{ - 6}}$$
C. $${\left( {\frac{P}{{2Q}}} \right)^{ - 6}}$$
D. $${\left( {\frac{P}{Q}} \right)^{ - 6}}$$
A. $$N\mu \coth \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
B. $$N\mu \tanh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
C. $$N\mu \sinh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
D. $$N\mu \cosh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
A. $$\sqrt {2C\left( {\frac{1}{{{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$
B. $$\sqrt {C\left( {\frac{1}{{2{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$
C. $$\sqrt {C\left( {\frac{1}{{{M_1}}} + \frac{1}{{2{M_2}}}} \right)} $$
D. zero
Join The Discussion