The vector potential in a region is, given as $$\overrightarrow {\bf{A}} \left( {x,\,y,\,z} \right) = - y{\bf{\hat i}} + 2x{\bf{\hat j}}.$$ The associated magnetic induction is $$\overrightarrow {\bf{B}} $$ is
A. $${\bf{\hat i}} + {\bf{\hat k}}$$
B. $$3{\bf{\hat k}}$$
C. $$ - {\bf{\hat i}} + 2{\bf{\hat j}}$$
D. $$ - {\bf{\hat i}} + {\bf{\hat j}} + {\bf{\hat k}}$$
Answer: Option B
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$
Join The Discussion