Examveda

The work done in bringing a charge +q from infinity in free space, to a position at a distance d in front of a semiinfinite grounded metal surface is

A. $$ - \frac{{{q^2}}}{{4\pi {\varepsilon _0}\left( d \right)}}$$

B. $$ - \frac{{{q^2}}}{{4\pi {\varepsilon _0}\left( {2d} \right)}}$$

C. $$ - \frac{{{q^2}}}{{4\pi {\varepsilon _0}\left( {4d} \right)}}$$

D. $$ - \frac{{{q^2}}}{{4\pi {\varepsilon _0}\left( {6d} \right)}}$$

Answer: Option C


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$