Three infinitely long wires are placed equally apart on the circumference of a circle of radius a perpendicular to its plane. Two of the wires carry current $$l$$ each, in the same direction, while the third carries current 2$$l$$ along the direction opposite to the other two. The magnitude of the magnetic induction $$\overrightarrow {\bf{B}} $$ at a distancer from the centre of the circle for r > a, is
A. zero
B. $$\frac{{2{\mu _0}}}{\pi } \cdot \frac{l}{r}$$
C. $$ - \frac{{2{\mu _0}}}{\pi } \cdot \frac{l}{r}$$
D. $$\frac{{2{\mu _0}}}{\pi } \cdot \frac{{la}}{{{r^2}}}$$
Answer: Option A
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$
Join The Discussion