Transformation to linear form by substituting v = y1 - n of the equation
$$\frac{{{\text{dy}}}}{{{\text{dt}}}} + {\text{p}}\left( {\text{t}} \right){\text{y}} = {\text{q}}\left( {\text{t}} \right){{\text{y}}^{\text{n}}};\,{\text{n}} > 0$$ will be
A. $$\frac{{{\text{dv}}}}{{{\text{dt}}}} + \left( {1 - {\text{n}}} \right){\text{pv}} = \left( {1 - {\text{n}}} \right){\text{q}}$$
B. $$\frac{{{\text{dv}}}}{{{\text{dt}}}} + \left( {1 - {\text{n}}} \right){\text{pv}} = \left( {1 + {\text{n}}} \right){\text{q}}$$
C. $$\frac{{{\text{dv}}}}{{{\text{dt}}}} + \left( {1 + {\text{n}}} \right){\text{pv}} = \left( {1 - {\text{n}}} \right){\text{q}}$$
D. $$\frac{{{\text{dv}}}}{{{\text{dt}}}} + \left( {1 + {\text{n}}} \right){\text{pv}} = \left( {1 + {\text{n}}} \right){\text{q}}$$
Answer: Option A
A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$
A. $$\sqrt {1 - {{\text{x}}^2}} = {\text{c}}$$
B. $$\sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
C. $$\sqrt {1 - {{\text{x}}^2}} + \sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
D. $$\sqrt {1 + {{\text{x}}^2}} + \sqrt {1 + {{\text{y}}^2}} = {\text{c}}$$

Join The Discussion