Two chords of length $$a$$ unit and $$b$$ unit of a circle make angles 60° and 90° at the centre of a circle respectively, then the correct relation is:
A. $$b = \sqrt 2 a$$
B. $$b = 2a$$
C. $$b = \sqrt 3 a$$
D. $$b = \frac{3}{2}a$$
Answer: Option A
Solution (By Examveda Team)

∠AOB = 60°
∠COD = 90°
⇒ length of chord AB = a
⇒ length of chord CD = b
⇒ AO = OB = AB = OD = OC = a
⇒ In ΔODC
⇒ OD2 + OC2 = CD2
⇒ a2 + a2 = b2
⇒ b = $$\sqrt 2 $$ a
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion