Two spin-1/2 fermions having spins $$\overrightarrow {{S_1}} $$ and $$\overrightarrow {{S_2}} $$ interact via a potential $$V\left( r \right) = \overrightarrow {{S_1}} .\overrightarrow {{S_2}} \,{V_0}\left( r \right).$$ The contributions of this potential in the singlet and triplet states, respectively are
A. $$ - \frac{3}{2}{V_0}\left( r \right){\text{ and }}\frac{1}{2}{V_0}\left( r \right)$$
B. $$\frac{1}{2}{V_0}\left( r \right){\text{ and }} - \frac{3}{2}{V_0}\left( r \right)$$
C. $$\frac{1}{4}{V_0}\left( r \right){\text{ and }} - \frac{3}{4}{V_0}\left( r \right)$$
D. $$ - \frac{3}{4}{V_0}\left( r \right){\text{ and }}\frac{1}{4}{V_0}\left( r \right)$$
Answer: Option C
A. Thorium series
B. Neptunium series
C. Uranium series
D. Actinium series
A. 10-10 eV
B. 10-9 eV
C. 10-6 eV
D. 10-4 eV
A. The process is allowed because ΔS = 0
B. The process is allowed because $$\Delta {I_3} = 0$$
C. The process is not allowed because ΔS ≠ 1 and $$\Delta {I_3} \ne 0$$
D. The process is not allowed because the Baryon number is violated
A. $${\left( {{}^1{s_{1/2}}} \right)^2}{\left( {{}^1{p_{3/2}}} \right)^3};\,J = \frac{3}{2}$$
B. $${\left( {{}^1{s_{1/2}}} \right)^2}{\left( {{}^1{p_{1/2}}} \right)^2}{\left( {{}^1{p_{3/2}}} \right)^1};\,J = \frac{3}{2}$$
C. $${\left( {{}^1{s_{1/2}}} \right)^1}{\left( {{}^1{p_{3/2}}} \right)^4};\,J = \frac{1}{2}$$
D. $${\left( {{}^1{s_{1/2}}} \right)^2}{\left( {{}^1{p_{3/2}}} \right)^2}{\left( {{}^1{p_{1/2}}} \right)^1};\,J = \frac{1}{2}$$
Join The Discussion