What is the area of the face of a clock described by its minutes hand between 9 am and 9 : 35 am, if the minutes hand is 10 cm long ?
A. $${\text{36}}\frac{2}{3}{\text{c}}{{\text{m}}^2}$$
B. $${\text{157}}\frac{1}{7}{\text{c}}{{\text{m}}^2}$$
C. $${\text{183}}\frac{1}{3}{\text{c}}{{\text{m}}^2}$$
D. None of these
Answer: Option C
Solution (By Examveda Team)
Angle swept by the minute hand in 35 minutes.$$\eqalign{ & = {\left( {\frac{{360}}{{60}} \times 35} \right)^ \circ } \cr & = {210^ \circ } \cr} $$
∴ Required area = Area of a sector of a circle with radius 10 cm and central angle 210°
$$\eqalign{ & = \frac{{\pi {r^2}\theta }}{{360}} \cr & = \left( {\frac{{22}}{7} \times 10 \times 10 \times \frac{{210}}{{360}}} \right){\text{c}}{{\text{m}}^2} \cr & = \frac{{550}}{3}{\text{c}}{{\text{m}}^2} \cr & = 183\frac{1}{3}{\text{c}}{{\text{m}}^2} \cr} $$
Join The Discussion