What is the measure of central angle of the arc. Whose length is 11 cm and radius of the circle is 14 cm?
A. 45°
B. 60°
C. 75°
D. 90°
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & \theta = \frac{l}{r}{\text{ radian}} = \frac{{11}}{{14}}{\text{ radian}} \cr & \because \pi {\text{ radian}} = {180^ \circ } \cr & \therefore 1{\text{ radian}} = \frac{{{{180}^ \circ }}}{\pi } \cr & \therefore \frac{{11}}{{14}}{\text{ radian}} = \frac{{180}}{{\frac{{22}}{7}}} \times \frac{{11}}{{14}} \cr & = \frac{{180 \times 11 \times 7}}{{22 \times 14}} \cr & = {45^ \circ } \cr} $$Related Questions on Circular Measurement of Angle
If 0 ≤ θ ≤ $$\frac{\pi }{2}$$ and sec2θ + tan2θ = 7, then θ is
A. $$\frac{{5\pi }}{{12}}$$ radian
B. $$\frac{\pi }{3}$$ radian
C. $$\frac{\pi }{6}$$ radian
D. $$\frac{\pi }{2}$$ radian

Join The Discussion