Examveda

Which of the following expressions for a vector potential $$\overrightarrow {\bf{A}} $$ does not represent a uniform magnetic field of magnitude B0 along the Z-direction?

A. $$\overrightarrow {\bf{A}} = \left( {0,\,{B_0}x,\,0} \right)$$

B. $$\overrightarrow {\bf{A}} = \left( { - {B_0}y,\,0,\,0} \right)$$

C. $$\overrightarrow {\bf{A}} = \left( {\frac{{{B_0}x}}{2},\,\frac{{{B_0}y}}{2},\,0} \right)$$

D. $$\overrightarrow {\bf{A}} = \left( { - \frac{{{B_0}y}}{2},\,\frac{{{B_0}y}}{2},\,0} \right)$$

Answer: Option C


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$