Which of the following is true?
$$\eqalign{
& {\text{I}}.\frac{1}{{\root 3 \of {12} }} > \frac{1}{{\root 4 \of {29} }} > \frac{1}{{\sqrt 5 }} \cr
& {\text{II}}.\frac{1}{{\root 4 \of {29} }} > \frac{1}{{\root 3 \of {12} }} > \frac{1}{{\sqrt 5 }} \cr
& {\text{III}}.\frac{1}{{\sqrt 5 }} > \frac{1}{{\root 3 \of {12} }} > \frac{1}{{\root 4 \of {29} }} \cr
& {\text{IV}}.\frac{1}{{\sqrt 5 }} > \frac{1}{{\root 4 \of {29} }} > \frac{1}{{\root 3 \of {12} }} \cr} $$
A. Only I
B. Only II
C. Only III
D. Only IV
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & \frac{1}{{\root 3 \of {12} }},\,\frac{1}{{\root 4 \of {29} }},\,\frac{1}{{\sqrt 5 }} \cr & {\text{Take LCM of roots}} = 12 \cr & \frac{1}{{{{12}^{\frac{1}{3}}}}},\,\frac{1}{{{{29}^{\frac{1}{4}}}}},\,\frac{1}{{{5^{\frac{1}{2}}}}} \cr & {\text{By multiplying by 12}} \cr & \frac{1}{{{{12}^4}}},\,\frac{1}{{{{29}^3}}},\,\frac{1}{{{5^6}}} \cr & \frac{1}{{20736}},\,\frac{1}{{24389}},\,\frac{1}{{15625}} \cr & {\text{Divisible by largest number gives lowest quotient}}{\text{.}} \cr} $$Related Questions on Surds and Indices
A. $$\frac{1}{2}$$
B. 1
C. 2
D. $$\frac{7}{2}$$
Given that 100.48 = x, 100.70 = y and xz = y2, then the value of z is close to:
A. 1.45
B. 1.88
C. 2.9
D. 3.7

Join The Discussion