Which one of the following Maxwell's equations implies the absence of magnetic monopoles?
A. $$\nabla .\overrightarrow {\bf{E}} = \frac{\pi }{{{\varepsilon _0}}}$$
B. $$\nabla .\overrightarrow {\bf{B}} = 0$$
C. $$\nabla \times \overrightarrow {\bf{E}} = - \frac{{\partial \overrightarrow {\bf{B}} }}{{\partial t}}$$
D. $$\nabla \times \overrightarrow {\bf{B}} = \left( {1/{c^2}} \right)\frac{{\partial \overrightarrow {\bf{B}} }}{{\partial t}} + {\mu _0}{\bf{\hat j}}$$
Answer: Option C
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$

Join The Discussion