Examveda
Examveda

Which one of the following Maxwell's equations implies the absence of magnetic monopoles?

A. $$\nabla .\overrightarrow {\bf{E}} = \frac{\pi }{{{\varepsilon _0}}}$$

B. $$\nabla .\overrightarrow {\bf{B}} = 0$$

C. $$\nabla \times \overrightarrow {\bf{E}} = - \frac{{\partial \overrightarrow {\bf{B}} }}{{\partial t}}$$

D. $$\nabla \times \overrightarrow {\bf{B}} = \left( {1/{c^2}} \right)\frac{{\partial \overrightarrow {\bf{B}} }}{{\partial t}} + {\mu _0}{\bf{\hat j}}$$

Answer: Option C


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$