Which one of the following statements is not correct about the Brillouin Zones (BZ) of a square lattices with constant a?
A. The first BZ is a square of side 2π/a in kx - ky plane
B. The areas of the first BZ and third BZ are the same
C. The k-points are equidistant in kx as well as in ky directions
D. The area of the second BZ is twice that of the first BZ
Answer: Option D
The valence electrons do not directly determine the following property of a metal
A. electrical conductivity
B. thermal conductivity
C. shear modulus
D. metallic lustre
A. $${\left( {\frac{{2Q}}{P}} \right)^{ - 6}}$$
B. $${\left( {\frac{Q}{P}} \right)^{ - 6}}$$
C. $${\left( {\frac{P}{{2Q}}} \right)^{ - 6}}$$
D. $${\left( {\frac{P}{Q}} \right)^{ - 6}}$$
A. $$N\mu \coth \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
B. $$N\mu \tanh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
C. $$N\mu \sinh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
D. $$N\mu \cosh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
A. $$\sqrt {2C\left( {\frac{1}{{{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$
B. $$\sqrt {C\left( {\frac{1}{{2{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$
C. $$\sqrt {C\left( {\frac{1}{{{M_1}}} + \frac{1}{{2{M_2}}}} \right)} $$
D. zero
Join The Discussion