While numerically solving the differential equation $$\frac{{{\text{dy}}}}{{{\text{dx}}}} + 2{\text{x}}{{\text{y}}^2} = 0,\,{\text{y}}\left( 0 \right) = 1$$ using Euler's predictor-corrector (improved Euler-Cauchy) with a step size of 0.2, the value of y after the first step is
A. 1.00
B. 1.03
C. 0.97
D. 0.96
Answer: Option D
Join The Discussion