Examveda
Examveda

$$\frac{1}{2}\left( {\log x + \log y} \right)$$    will equal to $$\log \left( {\frac{{x + y}}{2}} \right)$$   if -

A. y = 0

B. x = $$\sqrt {\text{y}} $$

C. x = y

D. x = $$\frac{{\text{y}}}{2}$$

Answer: Option C

Solution(By Examveda Team)

$$\eqalign{ & \frac{1}{2}\left( {\log x + \log y} \right) = \log \left( {\frac{{x + y}}{2}} \right) \cr & \Rightarrow \frac{1}{2}\log \left( {xy} \right) = \log \left( {\frac{{x + y}}{2}} \right) \cr & \Rightarrow \log {\left( {xy} \right)^{\frac{1}{2}}} = \log \left( {\frac{{x + y}}{2}} \right) \cr & \Rightarrow {\left( {xy} \right)^{\frac{1}{2}}} = \left( {\frac{{x + y}}{2}} \right) \cr & \Rightarrow xy = {\left( {\frac{{x + y}}{2}} \right)^2} \cr & \Rightarrow 4xy = {x^2} + {y^2} + 2xy \cr & \Rightarrow {x^2} + {y^2} - 2xy = 0 \cr & \Rightarrow {\left( {x - y} \right)^2} = 0 \cr & \Rightarrow x - y = 0 \cr & \Rightarrow x = y\, \cr} $$

Join The Discussion

Related Questions on Logarithm