Examveda $${\left( {\frac{{1 - \tan \theta }}{{1 - \cot \theta }}} \right)^2} + 1 = ?$$ A. cosec2θB. sec2θC. cos2θD. sin2θAnswer: Option B Solution (By Examveda Team) $$\eqalign{ & {\left( {\frac{{1 - \tan \theta }}{{1 - \cot \theta }}} \right)^2} + 1 \cr & = {\left( {\frac{{1 - \tan \theta }}{{\frac{{\tan \theta - 1}}{{\tan \theta }}}}} \right)^2} + 1 \cr & = \frac{{\left( {1 - \tan \theta } \right){{\tan }^2}\theta }}{{\left( {1 - \tan \theta } \right)}} + 1 \cr & = {\tan ^2}\theta + 1 \cr & = {\sec ^2}\theta \cr} $$ This Question Belongs to Arithmetic Ability >> Trigonometry
Solution (By Examveda Team) $$\eqalign{ & {\left( {\frac{{1 - \tan \theta }}{{1 - \cot \theta }}} \right)^2} + 1 \cr & = {\left( {\frac{{1 - \tan \theta }}{{\frac{{\tan \theta - 1}}{{\tan \theta }}}}} \right)^2} + 1 \cr & = \frac{{\left( {1 - \tan \theta } \right){{\tan }^2}\theta }}{{\left( {1 - \tan \theta } \right)}} + 1 \cr & = {\tan ^2}\theta + 1 \cr & = {\sec ^2}\theta \cr} $$
The equation $${\cos ^2}\theta $$ = $$\frac{{{{\left( {x + y} \right)}^2}}}{{4xy}}$$ is only possible when ? A. x = -yB. x > yC. x = yD. x < y View Answer
Join The Discussion