A 5-point sequence x[n] is given as
x[-3] = 1, x[-2] = 1, x[-1] = 0, x[0] = 5, x[1] = 1.
Let X(ejω) denote the discrete-time Fourier transform of x[n]. The value of $$\int\limits_{ - \pi }^\pi {X\left( {{e^{j\omega }}} \right)} d\omega $$
A. 5
B. 10π
C. 16π
D. 5 + j10π
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion