Solution (By Examveda Team)
$$\eqalign{
& {\text{A's}}\,{\text{1}}\,{\text{hour's}}\,{\text{work}} = \frac{1}{4}; \cr
& {\text{(B + C)'s}}\,{\text{1}}\,{\text{hour's}}\,{\text{work}} = \frac{1}{3}; \cr
& {\text{(A + C)'s}}\,{\text{1}}\,{\text{hour's}}\,{\text{work}} = \frac{1}{2}. \cr
& {\text{(A + B + C)'s}}\,{\text{1}}\,{\text{hour's}}\,{\text{work}} \cr
& = {\frac{1}{4} + \frac{1}{3}} = \frac{7}{{12}} \cr
& {\text{B's}}\,{\text{1}}\,{\text{hour's}}\,{\text{work}} \cr
& = {\frac{7}{{12}} - \frac{1}{2}} = \frac{1}{{12}} \cr
& \therefore {\text{B}}\,{\text{along}}\,{\text{will}}\,{\text{take}}\,{\text{12}}\,{\text{hours}}\,{\text{to}}\,{\text{do}}\,{\text{the}}\,{\text{work}} \cr} $$
Join The Discussion