A first-order low-pass filter of time constant T is excited with different input signals (with zero initial conditions up to t = 0). Match the excitation signals X, V, Z with the corresponding time responses for t ≥ 0:
Match List-I with List-II and select the correct answer:
| List-I | List-II |
| X. Impulse | P. $$1 - {e^{ - {t \over T}}}$$ |
| Y. Unit step | Q. $$t - T\left( {1 - {e^{ - {t \over T}}}} \right)$$ |
| Z. Ramp | R. $${e^{ - {t \over T}}}$$ |
A. X-R, Y-Q, Z-P
B. X-Q, Y-P, Z-R
C. X-R, Y-P, Z-Q
D. X-P, Y-R, Z-Q
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion