A first order system initially at rest has for a signal u(t), the response 1 - e-t. If the signal is 2u(t) cost, the response will be
A. $$\sqrt 2 \cos \left( {t - \frac{\pi }{4}} \right) - {e^{ - t}}$$
B. $$\sqrt 2 \cos \left( {t - \frac{\pi }{4}} \right) - \frac{1}{2}{e^{ - t}}$$
C. $$2\left( {1 - {e^{ - t}}} \right) + \frac{1}{{\sqrt 2 }}\cos \left( {t - \frac{\pi }{4}} \right)$$
D. $$\sqrt 2 \cos \left( {t\frac{\pi }{4}} \right)$$
Answer: Option A
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion