Solution (By Examveda Team)
$$\eqalign{
& \left( {{\text{P + Q + R}}} \right){\text{'s}}\,{\text{1}}\,{\text{hour's}}\,{\text{work}} \cr
& = {\frac{1}{8} + \frac{1}{{10}} + \frac{1}{{12}}} = \frac{{37}}{{120}} \cr
& {\text{Work}}\,{\text{done}}\,{\text{by}}\,{\text{P,}}\,{\text{Q}}\,{\text{and}}\,{\text{R}}\,{\text{in}}\,{\text{2}}\,{\text{hours}} \cr
& = {\frac{{37}}{{120}} \times 2} = \frac{{37}}{{60}} \cr
& {\text{Remaining}}\,{\text{work}} = {1 - \frac{{37}}{{60}}} = \frac{{23}}{{60}} \cr
& \left( {{\text{Q + R}}} \right){\text{'s}}\,{\text{1}}\,{\text{hour's}}\,{\text{work}} \cr
& = {\frac{1}{{10}} + \frac{1}{{12}}} = \frac{{11}}{{60}} \cr
& {\text{Now}},\frac{{11}}{{60}}\,{\text{work}}\,{\text{is}}\,{\text{done}}\,{\text{by}}\,{\text{Q}}\,\,{\text{and}}\,{\text{R}}\,{\text{in}}\,{\text{1}}\,{\text{hour}} \cr
& {\text{So}},\frac{{23}}{{60}}\,{\text{work}}\,{\text{will}}\,{\text{be}}\,{\text{done}}\,{\text{by}}\,{\text{Q}}\,{\text{and}}\,{\text{R}}\,{\text{in}} \cr
& = {\frac{{60}}{{11}} \times \frac{{23}}{{60}}} = \frac{{23}}{{11}}\,{\text{hours}} \approx 2\,{\text{hours}} \cr
& {\text{So,}}{\text{the}}\,{\text{work}}\,{\text{will}}\,{\text{be}}\,{\text{finished}}\,{\text{approximately}} \cr
& {\text{2}}\,{\text{hours}}\,{\text{after}}\,{\text{11}}\,{\text{A}}{\text{.M}}{\text{.,}}\,{\text{i}}{\text{.e}}{\text{.,}}\,{\text{around}}\,{\text{1}}\,{\text{P}}{\text{.M}}{\text{.}} \cr} $$
In LCM Method
LCM of 8, 10, 12 = 120.
So, units worked = 120/8, 120/12, 120/10= 15, 12, 10 respectively.
In 2 hours = 30+24+20 =74.
Then, 120-74=46.
Hence, 46/(12+10) = 46/22 = 2 hours approximately.
This question how would be solved by lcm method if anyone know plz rply for this