A network consisting of a finite number of linear resistor (R), inductor (L), and capacitor (C) elements, connected all in series or all in parallel, $$\sum\limits_{k = 1}^3 {{a_k}\cos \left( {k{\omega _0}t} \right),} $$ where ak ≠ 0, ω0 ≠ 0. The source has nonzero impedance. Which one of the following is a possible form of the output measured across a resistor in the network?
A. $$\sum\limits_{k = 1}^3 {{b_k}\cos \left( {k{\omega _0}t + {\phi _k}} \right),} {\text{ where }}{b_k} \ne {a_k},\,\forall k$$
B. $$\sum\limits_{k = 1}^3 {{b_k}\cos \left( {k{\omega _0}t + {\phi _k}} \right),} {\text{ where }}{b_k} \ne 0,\,\forall k$$
C. $$\sum\limits_{k = 1}^3 {{a_k}\cos \left( {k{\omega _0}t + {\phi _k}} \right)} $$
D. $$\sum\limits_{k = 1}^2 {{a_k}\cos \left( {k{\omega _0}t + {\phi _k}} \right)} $$
Answer: Option A
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion