A parabolic cable is held between two supports at the same level. The horizontal span between the supports is L. The sag at the mid-span is h. The equation of the parabola is \[{\text{y}} = 4{\text{h}}\left( {\frac{{{{\text{x}}^2}}}{{{{\text{L}}^2}}}} \right)\] , where x is the horizontal coordinate and y is the vertical coordinate with the origin at the centre of the cable. The expression for the total length of the cable is
A. \[\int\limits_0^{\text{L}} {\sqrt {1 + 64\frac{{{{\text{h}}^2}{{\text{x}}^2}}}{{{{\text{L}}^4}}}} } {\text{dx}}\]
B. \[2\int\limits_0^{\frac{{\text{L}}}{2}} {\sqrt {1 + 64\frac{{{{\text{h}}^3}{{\text{x}}^2}}}{{{{\text{L}}^4}}}} } {\text{dx}}\]
C. \[\int\limits_0^{\frac{{\text{L}}}{2}} {\sqrt {1 + 64\frac{{{{\text{h}}^2}{{\text{x}}^2}}}{{{{\text{L}}^4}}}} } {\text{dx}}\]
D. \[2\int\limits_0^{\frac{{\text{L}}}{2}} {\sqrt {1 + 64\frac{{{{\text{h}}^2}{{\text{x}}^2}}}{{{{\text{L}}^4}}}} } {\text{dx}}\]
Answer: Option D
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion