A particle is moving under the action of a generalised potential $$V\left( {q,\,\dot q} \right) = \frac{{\left( {1 + \dot q} \right)}}{{{q^2}}}$$
The magnitude of generalised force is
A. $$\frac{{2\left( {1 + \dot q} \right)}}{{{q^3}}}$$
B. $$\frac{{2\left( {1 - \dot q} \right)}}{{{q^3}}}$$
C. $$\frac{2}{{{q^3}}}$$
D. $$\frac{{\dot q}}{{{q^3}}}$$
Answer: Option A
A. increases till mass falls into hole
B. decreases till mass falls into hole
C. remains constant
D. becomes zero at radius r1, where 0 < r1 < r0
A. $$\frac{c}{3}$$
B. $$\frac{{\sqrt 2 }}{3}c$$
C. $$\frac{c}{2}$$
D. $$\frac{{\sqrt 3 }}{2}c$$
The Hamiltonian corresponding to the Lagrangian $$L = a{{\dot x}^2} + b{{\dot y}^2} - kxy$$ is
A. $$\frac{{{p_x}^2}}{{2a}} + \frac{{{p_y}^2}}{{2b}} + kxy$$
B. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} - kxy$$
C. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} + kxy$$
D. $$\frac{{{p_x}^2 + {p_y}^2}}{{4ab}} + kxy$$
A. circular
B. elliptical
C. parabolic
D. hyperbolic


Join The Discussion