A particle of charge q, mass m and linear momentum $$\overrightarrow {\bf{p}} $$ enters an electromagnetic field of vector potential $$\overrightarrow {\bf{A}} $$ and scalar potential $$\phi $$. The Hamiltonian of particle is
A. $$\frac{{{p^2}}}{{2m}} + q\phi + \frac{{{A^2}}}{{2m}}$$
B. $$\frac{1}{{2m}}{\left( {\overrightarrow {\bf{p}} - \frac{q}{c}\overrightarrow {\bf{A}} } \right)^2} + q\phi $$
C. $$\frac{1}{{2m}}{\left( {\overrightarrow {\bf{p}} - \frac{q}{c}\overrightarrow {\bf{A}} } \right)^2} + \overrightarrow {\bf{p}} \cdot \overrightarrow {\bf{A}} $$
D. $$\frac{{{p^2}}}{{2m}}q\phi - \overrightarrow {\bf{p}} \cdot \overrightarrow {\bf{A}} $$
Answer: Option B
A. increases till mass falls into hole
B. decreases till mass falls into hole
C. remains constant
D. becomes zero at radius r1, where 0 < r1 < r0
A. $$\frac{c}{3}$$
B. $$\frac{{\sqrt 2 }}{3}c$$
C. $$\frac{c}{2}$$
D. $$\frac{{\sqrt 3 }}{2}c$$
The Hamiltonian corresponding to the Lagrangian $$L = a{{\dot x}^2} + b{{\dot y}^2} - kxy$$ is
A. $$\frac{{{p_x}^2}}{{2a}} + \frac{{{p_y}^2}}{{2b}} + kxy$$
B. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} - kxy$$
C. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} + kxy$$
D. $$\frac{{{p_x}^2 + {p_y}^2}}{{4ab}} + kxy$$
A. circular
B. elliptical
C. parabolic
D. hyperbolic


Join The Discussion