A random variable X is defined by the double exponential distribution ρx(X) = ae-b|x| - ∞ < x < ∞
Where a and b are +ve constants. What is the relation between a and b so that ρx(X) is a probability density function?
A. $${\text{a}} = \frac{{\text{b}}}{2}$$
B. $${\text{b}} = \frac{{\text{a}}}{2}$$
C. $${\text{a}} = {\text{b}}$$
D. $${\text{a}} = \frac{1}{{\text{b}}}$$
Answer: Option A
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion