A real n × n matrix A = {aij} is defined as follows: aij = i, if i = j, otherwise 0
The summation of all n eigen values of A is
A. \[\frac{{{\text{n}}\left( {{\text{n}} + 1} \right)}}{2}\]
B. \[\frac{{{\text{n}}\left( {{\text{n}} - 1} \right)}}{2}\]
C. \[\frac{{{\text{n}}\left( {{\text{n}} + 1} \right)\left( {2{\text{n}} + 1} \right)}}{6}\]
D. \[{{\text{n}}^2}\]
Answer: Option A
Related Questions on Linear Algebra
A. 3, 3 + 5j, 6 - j
B. -6 + 5j, 3 + j, 3 - j
C. 3 + j, 3 - j, 5 + j
D. 3, -1 + 3j, -1 - 3j
A. 1024 and -1024
B. 1024√2 and -1024√2
C. 4√2 and -4√2
D. 512√2 and -512√2

Join The Discussion