1.
If $${\left[ {1,\,0,\, - 1} \right]^{\text{T}}}$$  is an eigen vector of the following matrix \[\left[ {\begin{array}{*{20}{c}} 1&{ - 1}&0 \\ { - 1}&2&{ - 1} \\ 0&{ - 1}&1 \end{array}} \right]\]   then corresponding eigen value is

2.
The eigen values of the following matrix are \[\left[ {\begin{array}{*{20}{c}} { - 1}&3&5 \\ { - 3}&{ - 1}&6 \\ 0&0&3 \end{array}} \right]\]

3.
Let A be the 2 × 2 matrix with elements a11 = a12 = a21 = +1 and a22 = -1. Then the eigen values of the matrix A19 are

4.
How many of the following matrices have an eigen value 1?
\[\left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&0 \end{array}} \right],\left[ {\begin{array}{*{20}{c}} 0&1 \\ 0&0 \end{array}} \right],\left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 1&1 \end{array}} \right]{\text{ and }}\left[ {\begin{array}{*{20}{c}} { - 1}&0 \\ 1&{ - 1} \end{array}} \right]\]

6.
If \[{\text{R}} = \left[ {\begin{array}{*{20}{c}} 1&0&{ - 1} \\ 2&1&{ - 1} \\ 2&3&2 \end{array}} \right],\]    then top row of R-1 is

7.
Let, \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} 2&{ - 0.1} \\ 0&3 \end{array}} \right]\]   and \[{{\text{A}}^{ - 1}} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{2}}&{\text{a}} \\ 0&{\text{b}} \end{array}} \right].\]
Then (a + b) = ?

8.
We have a set of 3 linear equations in 3 unknowns. 'X \[ \equiv \] Y' means X and Y are equivalent statements and 'X \[\not \equiv \] Y' means X and Y are not equivalent statements.
P : There is a unique solution.
Q : The equations are linearly independent.
R : All eigen values of the coefficient matrix are nonzero.
S : The determinant of the coefficient matrix is nonzero.
Which one of the following is TRUE?

10.
Consider the following simultaneous equations (with c1 and c2 being constants):
3x1 + 2x2 = c1
4x1 + x2 = c2
The characteristics equation for these simultaneous equations is

Read More Section(Linear Algebra)

Each Section contains maximum 100 MCQs question on Linear Algebra. To get more questions visit other sections.