A real-valued signal x(t) limited to the frequency band $$\left| f \right| \le {W \over 2}$$ is passed through a linear time invariant system whose frequency response is $$H\left( f \right) = \left\{ {\matrix{
{{e^{ - j4\pi f,}}} & {\left| f \right| \le {W \over 2}} \cr
{0,} & {\left| f \right| > {W \over 2}} \cr
} } \right.$$
The output of the system is
A. x(t + 4)
B. x(t - 4)
C. x(t + 2)
D. x(t - 2)
Answer: Option D
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion