A realization of a stable discrete time system is shown in figure. If the system is excited by a unit step sequence input x[n], the response y[n] is

A. $$4{\left( { - \frac{1}{3}} \right)^n}u\left[ n \right] - 5{\left( { - \frac{2}{3}} \right)^n}u\left[ n \right]$$
B. $$5{\left( { - \frac{2}{3}} \right)^n}u\left[ n \right] - 3{\left( { - \frac{1}{3}} \right)^n}u\left[ n \right]$$
C. $$5{\left( { - \frac{1}{3}} \right)^n}u\left[ n \right] - 3{\left( { - \frac{2}{3}} \right)^n}u\left[ n \right]$$
D. $$5{\left( { - \frac{2}{3}} \right)^n}u\left[ n \right] - 5{\left( { - \frac{1}{3}} \right)^n}u\left[ n \right]$$
Answer: Option C
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion